Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Diagnostics (Basel) ; 12(8)2022 Jul 30.
Article in English | MEDLINE | ID: covidwho-1969132

ABSTRACT

The SARS-CoV-2 virus has proliferated around the world and caused panic to all people as it claimed many lives. Since COVID-19 is highly contagious and spreads quickly, an early diagnosis is essential. Identifying the COVID-19 patients' mortality risk factors is essential for reducing this risk among infected individuals. For the timely examination of large datasets, new computing approaches must be created. Many machine learning (ML) techniques have been developed to predict the mortality risk factors and severity for COVID-19 patients. Contrary to expectations, deep learning approaches as well as ML algorithms have not been widely applied in predicting the mortality and severity from COVID-19. Furthermore, the accuracy achieved by ML algorithms is less than the anticipated values. In this work, three supervised deep learning predictive models are utilized to predict the mortality risk and severity for COVID-19 patients. The first one, which we refer to as CV-CNN, is built using a convolutional neural network (CNN); it is trained using a clinical dataset of 12,020 patients and is based on the 10-fold cross-validation (CV) approach for training and validation. The second predictive model, which we refer to as CV-LSTM + CNN, is developed by combining the long short-term memory (LSTM) approach with a CNN model. It is also trained using the clinical dataset based on the 10-fold CV approach for training and validation. The first two predictive models use the clinical dataset in its original CSV form. The last one, which we refer to as IMG-CNN, is a CNN model and is trained alternatively using the converted images of the clinical dataset, where each image corresponds to a data row from the original clinical dataset. The experimental results revealed that the IMG-CNN predictive model outperforms the other two with an average accuracy of 94.14%, a precision of 100%, a recall of 91.0%, a specificity of 100%, an F1-score of 95.3%, an AUC of 93.6%, and a loss of 0.22.

2.
Comput Biol Med ; 132: 104348, 2021 05.
Article in English | MEDLINE | ID: covidwho-1141688

ABSTRACT

Corona Virus Disease (COVID-19) has been announced as a pandemic and is spreading rapidly throughout the world. Early detection of COVID-19 may protect many infected people. Unfortunately, COVID-19 can be mistakenly diagnosed as pneumonia or lung cancer, which with fast spread in the chest cells, can lead to patient death. The most commonly used diagnosis methods for these three diseases are chest X-ray and computed tomography (CT) images. In this paper, a multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer from a combination of chest x-ray and CT images is proposed. This combination has been used because chest X-ray is less powerful in the early stages of the disease, while a CT scan of the chest is useful even before symptoms appear, and CT can precisely detect the abnormal features that are identified in images. In addition, using these two types of images will increase the dataset size, which will increase the classification accuracy. To the best of our knowledge, no other deep learning model choosing between these diseases is found in the literature. In the present work, the performance of four architectures are considered, namely: VGG19-CNN, ResNet152V2, ResNet152V2 + Gated Recurrent Unit (GRU), and ResNet152V2 + Bidirectional GRU (Bi-GRU). A comprehensive evaluation of different deep learning architectures is provided using public digital chest x-ray and CT datasets with four classes (i.e., Normal, COVID-19, Pneumonia, and Lung cancer). From the results of the experiments, it was found that the VGG19 +CNN model outperforms the three other proposed models. The VGG19+CNN model achieved 98.05% accuracy (ACC), 98.05% recall, 98.43% precision, 99.5% specificity (SPC), 99.3% negative predictive value (NPV), 98.24% F1 score, 97.7% Matthew's correlation coefficient (MCC), and 99.66% area under the curve (AUC) based on X-ray and CT images.


Subject(s)
COVID-19 , Deep Learning , Lung Neoplasms , Pneumonia , Algorithms , Early Detection of Cancer , Humans , Lung Neoplasms/diagnostic imaging , Pneumonia/diagnostic imaging , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL